SiQuENC: Algebra-based 2-d kinematics

Use lots of space. It's OK if many of the following sections take a page each.

Neatly and graphically represent situation(s)

- Carefully read the problem three times.
- Dashed bubble around system for which motion is being studied
- Label time points of interest (e.g. use Roman numerals).
- Label origin, $+x$ direction, and $+y$ direction.
- Translate the words "free-fall," "projectile motion," and "under the influence of Earth's gravitational pull alone" to mean that the system's acceleration is $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downward.
- Identify requested unknowns.

Horizontal	Vertical
Initial $t_{i}=$	
$x_{i}=$	$y_{i}=$
$v_{x, i}=$	$v_{y, i}=$
Between t_{i} and t_{f}	
$a_{x}=$	$a_{y}=$

Final $t_{f}=$

$x_{f}=$	
$v_{x, f}=$	$\begin{array}{l}y_{f}= \\ v_{y, f}=\end{array}$

Graphically represent quantities and their relationships

- Arrange dots on page to represent positions at different times.
- Attach arrows to dots to represent corresponding velocities and velocity vector components.
- As much as is reasonably possible, draw to scale.

If you can do it legibly, you can overlay these representations of quantities over your representation of situation(s).

- Graph kinematics quantity(ies) as function(s) of time.

Identify relevant allowed starting point (in)equation(s)

- Clearly distinguish horizontal and vertical kinematic quantities.
- Sort first principles into a table.
- Use x and y in subscripts, e.g. $v_{x, f}=v_{x, i}+a_{x, \mathrm{AVG}} \Delta t$
- Definitions
- Theorems

Use numbered steps to show REASoNing

Communicate

